skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zorn, Jacob_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In ferroelectric heterostructures, the interaction between intrinsic polarization and the electric field generates a rich set of localized electrical properties. The local electric field is determined by several connected factors, including the charge distribution of individual unit cells, the interfacial electromechanical boundary conditions, and chemical composition of the interfaces. However, especially in ferroelectric perovskites, a complete description of the local electric field across micro-, nano-, and atomic-length scales is missing. Here, by applying four-dimensional scanning transmission electron microscopy (4D STEM) with multiple probe sizes matching the size of structural features, we directly image the electric field of polarization vortices in (PbTiO3)16/(SrTiO3)16 superlattices and reveal different electric field configurations corresponding to the atomic scale electronic ordering and the nanoscale boundary conditions. The separability of two different fields probed by 4D STEM offers the possibility to reveal how each contributes to the electronic properties of the film. 
    more » « less
  2. Abstract The discovery of polar vortices and skyrmions in ferroelectric‐dielectric superlattices [such as (PbTiO3)n/(SrTiO3)n] has ushered in an era of novel dipolar topologies and corresponding emergent phenomena. The key to creating such emergent features has generally been considered to be related to counterpoising strongly polar and non‐polar materials thus creating the appropriate boundary conditions. This limits the utility these materials can have, however, by rendering (effectively) half of the structure unresponsive to applied stimuli. Here, using advanced thin‐film deposition and an array of characterization and simulation approaches, polar vortices are realized in all‐ferroelectric trilayers, multilayers, and superlattices built from the fundamental building block of (PbTiO3)n/(PbxSr1−xTiO3)nwherein in‐plane ferroelectric polarization in the PbxSr1−xTiO3provides the appropriate boundary conditions. These superlattices exhibit substantially enhanced electromechanical and ferroelectric responses in the out‐of‐plane direction that arise from the ability of the polarization in both layers to rotate to the out‐of‐plane direction under field. In the in‐plane direction, the layers are found to be strongly coupled during switching and when heterostructured with ferroelectric‐dielectric building blocks, it is possible to produce multistate switching. This approach expands the realm of systems supporting emergent dipolar texture formation and does so with entirely ferroelectric materials thus greatly improving their responses. 
    more » « less